

PI3A4626

3.0V, SOTiny™ Single-Supply 0.4Ω SPST (NO) CMOS Analog Switch

Features

- Low On-Resistance: 0.4Ω Max (+2.7V Supply)
- 0.1 Ω Max. On-Resistance Flatness at +25°C
- Fast Switching: 10ns Max.
- +1.5V to +3.6V Single-Supply Operation
- TTL/CMOS-Logic Compatible
- -25dB Off-Isolation at 100kHz
- 1nA Max. Off-Leakage at +25°C
- Packaging (Pb-free & Green available):
 5-pin Small Compact SOT23 (T)

Applications

- Cellular Phones
- Communications Circuits
- · Battery-Operated Equipment
- DSL Modems
- Audio and Video Signal Routing
- PCMCIA Cards

Pin Description

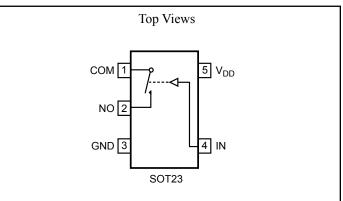
SOT23	Name	Function
1	COM	Analog Switch, Common
2	NO	Analog Switch, Normally Open
3	GND	Ground
4	IN	Digital Control Input
5	V _{DD}	Positive Supply Voltage
-	N.C.	No Internal Connection

Note:

1. NO and COM pins are identical and interchangeable. Any pin may be considered as an input or an output; signals pass.

Truth Table

Input	Switch State
LOW	OFF
HIGH	ON


Description

PI3A4626 is a single-pole/single-throw (SPST) normally open (NO) analog switch that operates from a single +1.5V to +3.6V supply.

The switch has 0.4Ω Max On-Resistance (R_{ON}), with 0.1Ω Max R_{ON} flatness over the analog signal range when powered from a +3.0V supply. Leakage currents are less than 2nA and fast switching times are less than 10ns.

To minimize PC board area use, the device is available in a small compact SOT23 package.

Block Diagrams/Pin Configurations

Absolute Maximum Ratings

_	
Voltages Referenced to GND	Continuous Po
V _{DD} 0.5V to +3.6V	SOT23 (derate
V_{IN} , V_{COM} , V_{NC} , V_{NO} ⁽¹⁾ 0.5V to V_{DD} +0.3V or 30mA, whichever occurs first	Storage Tempe
Current (any terminal)±200mA	Lead Temperat
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)±400mA	

Thermal Information

Continuous Power Dissipation	
SOT23 (derate 7.1mW/°C above +70°C)	0.5W
Storage Temperature $65^{\circ}C$ to $+1$	50°C
Lead Temperature (soldering, 10s) +3	00°C

Note:

1. Signals on NC, NO, COM, or IN exceeding V_{DD} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

Description	Parameters	Test Conditions	Package	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch								
Analog Signal Range ⁽³⁾	VANALOG			Full	0		V _{DD}	V
	Derr	$V_{DD} = 2.7 V_{,}$		25			0.4	
On Resistance	R _{ON}	$I_{COM} = 100 \text{mA},$	SOT23	Full			0.5	
On-Resistance Match	ADax	$V_{\rm NO}$ or $V_{\rm NC}$ =		25			0.05	
Between Channels ⁽⁴⁾ ΔR_{ON}	ARON	+1.5V		Full			0.06	Ω
		V _{DD} = 2.7V		25			0.1	
On-Resistance Flatness ⁽⁵⁾	R _{FLAT(ON)}	$I_{COM} = 100 \text{mA},$ V _{NO} or V _{NC} =0.8V, 2.0V		Full			0.1	
NO or NC Off Leakage	I _{COM(OFF)} or	$V_{DD} = 3.3V,$ $V_{COM} = 0V, V_{NO} \text{ or }$ $V_{NC} = +2.0V$		25	-1		1	
Current ⁽⁶⁾ ICOM(OFF) OI INC(OFF)				Full	-20		10	
COM On Leakage Cur- rent ⁽⁶⁾	I _{COM(ON)}	V _{DD} =3.3V,		25	-2		2	nA
		$V_{COM} = +2.0V,$ V_{NO} or $V_{NC} = +2.0V$		Full	-20		20	

Electrical Specifications - Single +3.3V Supply (continued)

 $(V_{DD} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Parameters	Test Conditions	Temp (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Logic Input							
Input High Voltage	V _{IH}	Guaranteed logic High Level	Full	1.4			v
Input Low Voltage	V _{IL}	Guaranteed logic Low Level				0.5	
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$		-1		1	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5V$, all other = 1.4V		-1		1	μA
Dynamic		•			~		
Turn-On Time	t _{ON}	$V_{DD} = 3.3V$, V_{NO} or $V_{NC} = 2.0V$, Figure 1	25			10	ns
			Full			10	
Turn-Off Time	t _{OFF}		25			10	
			Full			10	
Charge Injection ⁽³⁾	Q	$C_L = 1 nF, V_{GEN} = 0V,$ $R_{GEN} = 0\Omega,$ Figure 2	25		50		pC
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, f = 100kHz, Figure 3			-25		dB
NC or NO Capacitance	C _(OFF)	f = 1 MHz, Figure 4			130		
COM Off Capacitance	C _{COM(OFF)}	I – I MHZ, FIGULE 4			130		pF
COM On Capacitance	C _{COM(ON)}	f = 1 MHz, Figure 4			270		
Supply							
Power Supply Range	V _{DD}		Full	1.5		3.6	V
Positve Supply Current	I _{CC}	$V_{DD} = 3.6V, V_{IN} = 0V \text{ or } V_{DD}$				100	nA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} Max. - R_{ON} Min.$

5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.

7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 3.

Electrical Specifications - Single +2.5V Supply

 $(V_{DD} = +2.5V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	VANALOG			0		V _{DD}	V
On-Resistance	Pau	$V_{DD} = 2.5V, I_{COM} = -8mA,$	25			0.4	
	R _{ON}	V_{NO} or $V_{NC} = 1.8V$	Full			0.4	
On-Resistance Match	AD	$V_{DD} = 2.5V, I_{COM} = -8mA,$ F V _{NO} or V _{NC} = 0.8V, 1.8V 2	25			0.05	Ω
Between Channels ⁽⁴⁾	ΔR_{ON}		Full			0.06] \2
On-Resistance Flatness ⁽⁵⁾	D		25			0.1	
On-Resistance Flatness	R _{FLAT(ON)}		Full			0.1	
Dynamic			•	r			
Turn-On Time	t	V _{DD} = 2.5V,	25			10	ns
	t _{ON}		Full			15	
Turn-Off Time	<i>t</i>		25			10	
Tum-On Time	t _{OFF}		Full			10	
Charge Injection ⁽³⁾	Q	$C_L = 1nF, V_{GEN} = 0V,$ $R_{GEN} = 0V,$ Figure 2	25		42		pC
Logic Input							
Input HIGH Voltage	V _{IH}	Guaranteed logic high level	Full	1.4			v
Input LOW Voltage	V _{IL}	Guaranteed logic Low level	Full			0.5] ^v
Input HIGH Current	I _{INH}	$V_{IN} = 1.4$ V, all others = 0.5V	Full	-1		1	
Input HIGH Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA

Notes:

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} \max$. - $R_{ON} \min$.

5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

^{1.} The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

Electrical Specifications - Single +1.8V Supply

 $(V_{DD} = +1.8V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	VANALOG			0		V _{DD}	V
On-Resistance	Pour	$V_{DD} = 1.8V, I_{COM} = -4mA,$	25			0.4	
On-Resistance	R _{ON}	V_{NO} or $V_{NC} = 1.5V$	Full			0.8	
On-Resistance Match	AD any	$V_{DD} = 1.8V, I_{COM} = -4mA,$	25			0.05	Ω
Between Channels ⁽⁴⁾	ΔR_{ON}	$V_{\rm NO} \text{ or } V_{\rm NC} = 0.8 \text{V}, 1.5 \text{V}$	Full			0.06] \$2
On-Resistance Flatness ⁽⁵⁾	D		25			0.4	
	R _{FLAT(ON)}		Full			0.6	1
Dynamic							
	t _{ON}	$V_{DD} = 1.8V, V_{NO} \text{ or } V_{NC} = 1.5V, Figure 1$	25			15	ns
Turn-On Time			Full			15	
Turn-Off Time			25			10	
	t _{OFF}		Full			15	1
Charge Injection ⁽³⁾	Q	$CL = 1nF, V_{GEN} = 0V,$ $R_{GEN} = 0V, Figure 2$	25		29		pC
Logic Input							
Input HIGH Voltage	V _{IH}	Guaranteed logic high level	Full	1.4			
Input LOW Voltage	V _{IL}	Guaranteed logic Low level	Full	1		0.5	V
Input HIGH Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	
Input HIGH Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} \max$. - $R_{ON} \min$.

5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

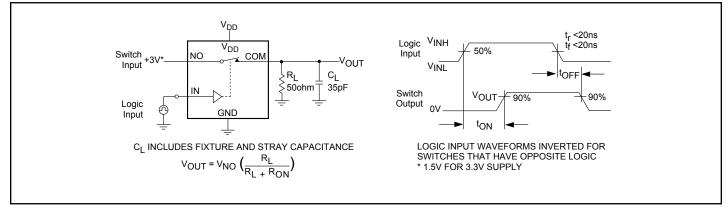


Figure 1. Switching Time

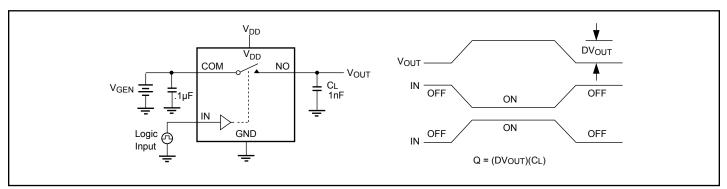
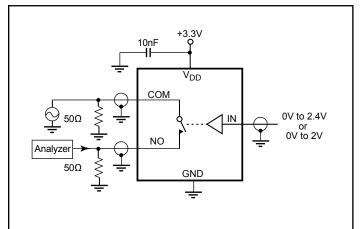
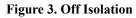




Figure 2. Charge Injection

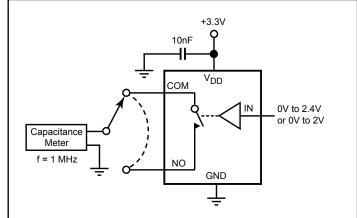
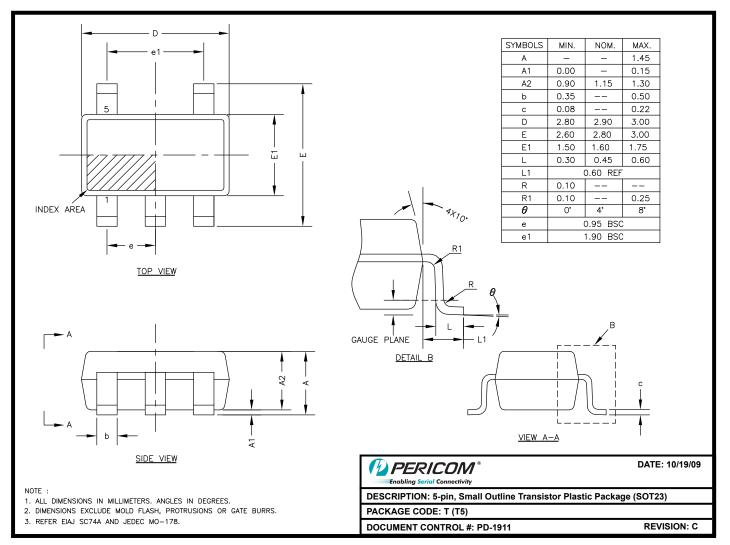



Figure 4. Channel On/Off Capacitance

Packaging Mechanical: 5-Pin SOT23 (T)

09-0130

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Packaging Code	Package Description	Top Mark
PI3A4626TEX	Т	Pb-free & Green, 5-pin Small Compact SOT23	ZD

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

2. X = Tape/Reel

3. Number of transistors = TBD

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com